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Massive particle production in anisotropic space-times 
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WC2R 2LS, UK 

Received 17 October 1979 

Abstract. Using a perturbation expansion to second order in a quantity determining 
deviation from conformal invariance, we obtain general expressions for the number and 
energy densities at late times of free, massive, scalar particles produced by quantum effects 
in an anisotropic space-time. Some interesting special cases are given and cosmological 
implications discussed. 

1. Introduction 

The computational difficulties involved in obtaining exact results from quantum field 
theory in curved space-time have led to the calculation of particle production (Zeldo- 
vich and Starobinski 1977, Fischetti and Hartle 1978, Birrell 1979) and stress tensors 
(Davies and Unruh 1979, Fischetti et a1 1979, Hartle and Hu 1979, Horowitz 1979) in 
perturbation theory in the metric about flat space-time. The power of this technique is 
demonstrated here as we extend some of the previous results to massive particles and 
non-isotropic space-times, calculating the number and energy density of particles 
created by a small gravitational disturbance. The expressions, which are non-local as 
expected, apply to late times, when the disturbance has ceased. The computation of 
stress tensors which apply at all times is much more complicated. 

Davies and Unruh (1979) obtained a concrete expression for (T,”), the vacuum 
expectation value of the stress tensor of a massless, non-conformally coupled scalar 
field q5 propagating in a spatially flat Robertson-Walker space-time. At late times, 
where the space-time curvature can be neglected (e.g. if the metric approaches that of 
Minkowski space or a radiation-dominated Friedmann universe for which R = 0), the 
only surviving term of their expression is 

where a is the conformal scale factor, 77 is the conformal time parameter, g =  
(f--&a2R, with 5 the conformal coupling constant of the field, and E,, = d i a g ( l , ~ ,  T ,  7 )  
in Minkowski coordinates. The created particles thus behave like massless radiation 
with an energy per unit volume 

1 1 1  

m 

(1.2) 
1 “  

P = -= I-, d77i d772 gf(771)gf(772) ln1~1-  7721. 

In what follows we shall generalise (1.2) to the case of a massive field and an 
anisotropic space-time. 
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The field satisfies 

(O+m2+g+#J = o  
and the background space-time is taken to have the metric 

3 
d s Z = a Z ( q ) ( d q 2 -  i = l  1 ( l + h i ( 7 ) ) d x ? )  

where it is assumed that 

maxlhl(v)l<< 1, 

d k ( X )  = ( 2 w ) - 1 ' 2 a - 1  e $ k ( T )  

i = 1,2,  3. 

In this space-time the field 4 possesses mode solutions of the form 

where 

$k(7)=e-"""+'[' Vkh i )  sinw(77-771)$k(Ti)d71 
w -a 

with 

v k  (7) = C hl ( 7 ~ :  + m2(a ' ( 0 0 )  - a '(77 )) - (5  - 8 R (t7)a '(77) 
I 

and 
2 w = k 2 +  m2a2(Co). 

This simple solution only results if we restrict the h, by the condition 

Ch1(77)=0. 
I 

In the late time region (7 + CO) (1.6) gives 

$k (77) = a, e-'"'' + &,, e'"" 

where the Bogolubov coefficients are given by 
00 

( Y , = l + -  I e'""Vk(7))$k(T) d7, 
2w -a 

: r m  

If we treat vk(7) as small, then (1.10)-(1.12) can be solved by iteration. To lowest 
order, (1.11) gives a, = 1, and (1.12) gives pw =0,  which, in (l,lO), give $ k ( q )  =e-iw". 
Substituting this approximation to $k into (1.11) and (1.12) gives the Bogolubov 
coefficients to first order in v k :  

( Y , = l + -  Im Vk(q)dV, (1.13) 

= --I e-2i"'vk(77) d7. (1.14) 

2w -a 
. m  
1 

2w -m 
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If the quantum state chosen corresponds to the ‘in’ vacuum, then in the ‘out’ region 
(q + 00) the number density (per unit proper volume) is 

4 .  

and the energy density is 

(1.15) 

(1.16) 

For this approach to be valid, we must have h i (q ) ,  a2 (q )R(q )  + 0 as q -* f00 and in 
the massive case, in addition, a (q) + a(m) < 03 as q + *CO. The formalism can also be 
used for cosmological models which expand from a singularity at q = 0, so long as Vk(q) 
vanishes as q -* 0. One simply replaces the lower limits of the q-integrations by zero. 

2. Particle number 

In this section the number of created particles per unit volume will be calculated for the 
space-time (1.3), under the conditions of the previous section. 

First (1.14) is substituted into (1.15): 

(2.1) 

where the isotropic part of the perturbation has been written as V ( q ) :  

~ ( 7 ) ”  m 2 ( a 2 ( c o ) - a 2 ( q ) ) - ( 5 - ~ ) R ( q ) a 2 ( q ) .  (2.2) 

Note that no single summation cross terms appear in (2.1) due to the fact that, under 
angular integration in k space, 

Therefore, to second order in the potential, the total particle number density is just the 
sum of the separate contributions from the anisotropic and isotropic perturbations. 

The other angular integrals give 47r for the isotropic part and 

for the anisotropic part. Using the property (1.9) once again we have 

(2.4) 

To obtain a convergent answer, we must assume that hi,  h:l -*O as q -**CO, where 
the prime denotes differentiation with respect to q. Then integrating the Fourier 
transform of hi twice by parts enables us to replace h i ( q )  by -h:l (77)/4w . We can also 2 



2112 N D Birrell and P C W Davies 

replace the exponential in (2.1) by its real part, as the double 7-integrations have the 
effect of symmetrising on -ql - 7 2 .  Equation (2.1) then reduces to  

The k-integrations can be performed using an equation from Oberhettinger (1957, 
p 7) and the result derived in the Appendix to give 

.m 

where al  etc, C 2  = Ca/3y8Capv8 = Zi (h:')', f i  = ma(a) and 

F i x )  E - 1 / ~  +x(J~(~x)H-~(~x)+H~(~x)J~(~x)), ( 2 . 7 )  

H, being Struve functions, J, Bessel functions. 

the results of Zeldovich and Starobinski (1977). 
Note that, in the massless limit, the first term of (2.6) survives. This limit agrees with 

3. The energy density 

To compute p we can use expression (2.5) with an additional factor of w / a  in the 
integrand of the k-integrals. This necessitates a further integration by parts, resulting in 
factors of h?, which we also assume vanish at 7 = fa. 

After performing the k-integrations one obtains 

where KO is a modified Bessel function of the second kind. Curiously, this expression is 
considerably simpler than (2.6). 

In the massless limit, (3.1) reduces to 

(3.2) 
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If additionally h, = 0, then, noting that the constant factor in the argument of the 
logarithm can be changed arbitrarily without affecting the result (since j?m dq V'(7) = 
j?m d v  h : ' ( v )  = 0), (3.2) reduces to (1.1). 

4. Explicit examples 

Unfortunately there are very few choices of  hi(^) or V(7)  for which the integrals in 
(2.6) or (3.1) can be performed in terms of known functions (e-o'", a constant, is one of 
the few). Nevertheless, the expressions are of great value for numerical computations. 

To obtain some idea of the predictive power of the perturbation technique, we shall 
examine some explicit examples for which, by returning to (1.13)-( 1.16) and perform- 
ing the 7-integrations first, closed-form answers may be obtained. 

4.1. Isotropic space-time, conformally coupled massive field 

Consideration of a conformally coupled (5  = 2) field in an isotropic space-time (hi = 0) 
with scale factor 

a2 (v )  = 1 - A  exp(-a2V2), a, A constant, (4.1) 

corresponding to a universe which contracts rapidly, bounces at 7 = 0 and expands out 
again symmetrically, enables both n and p to be evaluated. From (2.2) we have 

~ ( 7 )  = W I ~ A  exp(--a2T2) (4.2) 

and we find, using (1.14), 

im2AJ?r 
2wff p = -  exp(-w ' / a  '), 

where, from (1.8), 
2 w = k 2 + m 2  

Substitution into (1.15) yields standard integrals which give 

m4A2 exp(-2m2/a2) m 
n =-( - - ( 1 - @ (m JZ/ a )) , 

16a JG a 

(4.3) 

(4.4) 

(4.5) 

where CP is an error function. 
Similarly, substitution into (1.16) yields 

m4A2 exp(-2m2/a2) O0 k2 exp(-2k2/a2) 
dk. 

8Ta2 10 (k2+m2)1/2 P =  

This integral may be evaluated by using the following integral representation for 
1 / (k2+  m2)1'2: 

.L J KO(mx) cos kx dk. 
( k 2 + m  ) T 

(4.6) 

By interchanging the order of integration, the first integral is now elementary and the 
second is KO multiplied by a Gaussian function, which can be performed in terms of a 
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Whittaker function. We obtain 
1/2 a m 4 A 2  

p = z8; exp(-m2/a2) [ 2K o( 5) - (;) - w-l,o( 31. (4.7) m 

A useful check is that n, p + 0 as m + 0. Note also that n, p + 0 as m + a3. These 
limits are approached as the dimensionless quantity m / a  satisfies m / a  << 1 and m / a  >> 1 
respectively. The functions peak around m = a, which is expected on physical grounds 
as a sort of ‘resonance’, when the background space-time is changing on a timescale 
comparable with the particle Compton time. This behaviour has been verified 
numerically without the use of perturbation theory, using the momentum space method 
of Birrell (1979). Assuming that most particles are created in a time -m-’, we may use 
this special case to draw the general conclusion that a Friedmann universe which 
expands from the Planck era with a decelerating rate (e.g. a( t )cCt”2aT)  will not 
produce conformally coupled particles appreciably until u / a  - m, i.e. t - m -1 . 

4.2. Isotropic space-time, non-conformally coupled massive field 

The result of 0 4.1 suggests that if particle creation results from conformal symmetry 
breaking caused by the presence of a mass, it is relative!y inefficient, as production is 
inhibited when the space-time varies rapidly compared to m-’. If the conformal 
symmetry is instead broken by non-conformal coupling (5  Z a) then there is no length 
scale in the theory, and this suppression will not occur. We therefore expect that when 
the field is both massive and non-conformally coupled, the influence of the mass will be 
negligible in a realistic cosmological model. 

To check this expectation we treat the model 

a ( T ) =  I - - c Y ~ / ~ ( ( u ~ + ~ ~ ~ ) ,  a constant, (4.8) 
which, once again, corresponds to a universe which contracts to a small value of the 
scale factor, bounces, and expands out again in a symmetric fashion. This time, 
however, we assume 5 f $. 

Noting that 

R = 6(3a ’7 - a“)/(  77 + CY 2/2)3, (4.9) 

one obtains 

where 
A =2a3m2+384aA,  B = 672A-7a2m2, 

C = 480& A, A =  (e-:). 

(4.10) 

Substitution of (4.10) into (1.16) yields standard k-integrals and we obtain 

(4.1 1) 

(4.12) 
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Note that as m +CO,  p + 0 as expected. However, in the massless limit, (4.12) does 
not vanish for non-zero A, but yields 

p = 1*843A2/a4= A2Riax,  (4.13) 

where R,,, is the maximum value of the curvature. This accords well with the general 
results of Birrell et a1 (1980). 

The dependence of a 4 p  on ma is shown in figure l ( a )  for conformal coupling, 5 = i, 
and in figure l ( b )  for minimal coupling, 5 = 0. As in § 4.1, the density in the conformally 
coupled case is distinctly peaked around CY = m-', showing that maximum particle 
creation occurs when the expansion rate is comparable with the particle's Compton 
time. On the other hand, in the minimally coupled case, p is a very slowly varying 
function of m (for fixed CY).  Thus, the presence of a mass does not appreciably improve 
the particle production rate when the field is already non-conformally coupled. 

1 

-6 01 

, I  I ,  , ,  1 I , 7  
J l  
0 0  0 6  16 00  0 8  16 

ma 
(a1 

m u  
1 b) 

Figure 1. The energy density of created particles as a function of particle mass for a universe 
with scale factor (4.8). ( a )  is for conformally coupled particles, 5 = &, and ( b )  is for minimal 
coupling 6 = 0. 

4.3. Anisotropic space-time, massive field 

The conformal symmetry breaking that leads to particle production can arise in a third 
way, namely by departure of the background space-time from conformal flatness. 

Consider first the space-time with metric (1 -3) with 

hi(v)  = exp(-av2) cos(pv2 + si) (4.14) 

where the Si differ by 2 ~ / 3  so that Xi hi = 0. This metric represents anisotropic 
oscillations of a general Friedmann space-time with scale factor ~ ( 7 7 ) .  The space-time 
is reminiscent of the mixmaster moael. 

From (1.7) and (1.14), the contribution to the Bogolubov coefficient pw from the 
anisotropic perturbation is 

p =-- i J, exp[-02/(a +ip)]  exp(-iSi)). 
w 2 0  c I k:  Re( (CY +ip) ' /2  (4.15) 
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Substituting into (1.16) and using (2.3) one obtains 

for the contribution of the anisotropic perturbations to the energy density. In the 
massless limit this reduces to 

1 ( a 2 + p 2 p 2  
3 4  '=2880rr a a  

As a second similar example consider 

Then 

(4.17) 

(4.18) 

(4.19) 

and 

k6 6 2 -2aB m a e  k 
- 4 a w  d k + 3 l 0  O(P/2 - -w) -cosh4aw dk. lom e(@ - p/2) - e 

w w P =  

(4.20) 

For p < 2ma (00) only the first integral contributes and one finds 

m 3 a 3 ( ~ )  cosh 2ap 
K3[4ma (0O)aI. 

= 512aa4 (4.21) 

For p > 2m the integrals cannot be performed in terms of known functions; however, in 
the massless limit, we find 

(4.22) 

Note that both (4.16) and (4.21) approach zero exponentially fast for large m. They 
do not, however, vanish when the cycle frequency p + 0. This is because there are still 
aperiodic anisotropies due to the factors and a2/(a2+v2) in (4.14) and (4.18) 
respectively. 

It is of interest to examine whether anisotropic oscillations of the form (4.14) and 
(4.18) can be allowed in realistic cosmological models without producing so many 
particles as to be in conflict with observation. This is particularly relevant since it seems 
inevitable that the universe will emerge from the quantum gravity era, prior to the 
Planck time (tP = s), with 'random' oscillations of this form. These oscillations 
will presumably be damped by a variety of mechanisms (see MacCallum (1979) for a 
review), including back reaction by the created particles. We are not in a position to 
study this back reaction, especially since vacuum polarisation effects are of first order in 
the anisotropic perturbation (see Hartle and Hu 1979, Horowitz 1979) and thus are of 
more importance to back reaction than the second-order particle production calculated 
here. We are, however, able to calculate roughly by which time oscillations of a given 
frequency must be damped if they are to produce less energy than is presently observed 
(we shall take this to be po = loT3' g ~ m - ~  as an upper bound). 

p = [4(ap)'+ ~ O ( C U P ) ~  + 3ap + 15 e-2"p]/(61440a4a4). 
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We shall restrict our attention to oscillations about a radiation dominated Fried- 
mann model with 

a ( t )  = yt”’ = f y 2 T .  (4.23) 

Consider first the oscillations (4.14), which can now be written in terms of ‘cosmic’ time t 
as 

hi(r) = exp(-4at/y2) C O S ( ~ P ~ / Y ’ + S ~ ) ,  (4.24) 

and we observe that the frequency v of oscillation is 

= 4P/Y2, (4.25) 

while a measure of the isotropisation time rI is given by 

r1 = y2/(4a). (4.26) 

We simplify matters by considering only massless particles, which is certainly a good 
approximation for high frequencies, and write the energy density (4.17) at the present 
time t o =  1017 s in terms of v and tI as 

(4.27) 

where we have reinstated factors of f i  and c that have previously been set equal to one. 
For a given value of v we wish to determine the time tI at which p(to) = p 0 .  Then, 

provided v 3 t;’, if the oscillations damp within time tI they are compatible with the 
observed energy density. Inserting the known constants in (4.27) and rearranging, we 
must thus solve 

y 1 0 + ~ y 8 + 1 ~ y 6 + ~ ~ y 4 + 5 y 2 + ~  = 1 0 ~ ~ ~ ( ~ / ~ ) ~  (4.28) 

for tI, where y = vtI. 
If y = 1 then this reduces to 

y - 4  L- 1 0 - ~ ~ 5 ,  

so that v = s = tp. This tells us that oscillations with Planck 
frequency must be damped within a few Planck times. As G does not enter the theory, 
this result would appear to be a consequence of one of the ‘big number coincidences’. 

1 << << 1 0 ~ ~ ~ - ~ ,  (4.29) 

s-’ and tr = 

If 

then to a good approximation (4.28) is 

which implies y L- 1029vv-2’3 and hence 

(4.30) 

applicable, because of (4.29), for v << tp ’ .  Thus, for example, according to this cri- 
terion? there could still be oscillations with frequencies less than lo7 s-’ present today. 

29 - 5 / 3  tI=10 v , 

? The observed energy density is not the only possible criterion (see for example Hu and Parker (1978) and 
references cited therein). 
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To obtain some idea of how model dependent are these results we turn now to the 
model with oscillations (4.18). Writing this in terms of cosmic time we have 

CY' 
hi(t)  = 2 cos(2pt'/2/ y +Si), 

a 2 + 4 t / y  
(4.31) 

and we see that a measure of the isotropisation time is given by 

11 = CY y2/4, (4.32) 

while the frequency of oscillation slows down with time as 

v(t) = vI(tI/ t) ' /2 (4.33) 

U1 = 2p/ y t y 2 .  (4.34) 

where vI is the frequency at the isotropisation time, 

Writing the energy density of created, massless particles at the present time in terms 
of tI, vI we have (from (4.22)) 

2 

'(") =983040c5 ti (2) 4 ( 4 y 5 + 2 0 y 3 + 3 y + 1 5  y e-"), (4.35) 

where y V I ~ I .  Inserting the known constants, the condition p ( t o )  = p o  becomes 

4y5+20y3+3y + 15 e -2y=  1088(y/vI)2. (4.36) 

If y = 1 then this reduces to 
v;2 = 

so that vI = 
oscillations must damp within a few Planck times. 

s = tp and tI = tp. Thus, as in the previous example, Planck frequency 

If 

1 << y << 1088v;2, (4.37) 

then (4.36) can be approximated by 
y32.1088 V I  -2 9 

29 -2/3 hence y = 10 vI  and thus, for vI<< tp ' ,  

t1=10 UI , 29 - 5 / 3  (4.38) 

in exact agreement with the result (4.30) of the previous model. We are thus led to 
believe that the results obtained here are probably quite insensitive to the model of 
oscillation. 

5. Conclusion 

We have shown that the perturbation method can be applied to numerous interesting 
situations, allowing fairly general conclusions to be drawn. In cases in which analytic 
results cannot be obtained, the general formulae that we have derived for the number 
and energy densities are particularly amenable to numerical calculation. 
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As yet, no one has obtained the complete stress tensor to second order in the 
anisotropic perturbation or in the mass. Hartle and Hu (1979) and Horowitz (1979) 
have obtained the vacuum expectation value of the massless stress tensor to first order 
in the anisotropic perturbations, thus obtaining the vacuum polarisation contribution. 
However, these contributions vanish in the out region and one must go to second order 
to obtain the particle production effects which persist in that region, giving the energy 
densities studied here. On the basis of our results, it seems that the calculation of the 
stress tensor to second order in the massive anisotropic case would be a most 
worthwhile, if herculean, task. 
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Appendix 

In obtaining (2.6) an integral of the following form is needed: 

I = [ o m c ~ ~ a ( k 2 + c ” ) 1 ~ ” d k  

dk 
-_  a msina(k2+c2)1/2  
-aa lo (k2+c2)1/2 

=[omdk:[oadx Jo[c(a2-x2)1/2]cos kx 

=Iomdk(cos k a + l (  m a  ~ X - J ~ [ C ( L Y ” - X ~ ) ~ / ~ ] C O S  kx 
2 aa 
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